

WATER TREATMENT AT POWER PLANT

Radioactive Waste Treatment and Decommissioning Product Recommendations

Ion exchange resins are an efficient and simple way to purify waste streams and concentrate radioisotopes on a solid substrate before treated liquid is released to the environment or recycled to the nuclear circuits. In certain cases reverse osmosis membranes can be used to upconsentrate the radioactive stream and thus reduce the amount of liquid waste requiring treatment. During decommissioning operations, which mainly occur under water, ion exchange resins are used to purify decommissioning units to increase visibility and remove contaminants, as well as treat effluent when the decommissioning pool is emptied.

TECHNOLOGY	PRODUCT	APPLICATION	FEATURES AND RECOMMENDED USES	TYPE	MATRIX	MINIMUM TOTAL VOLUME CAPACITY (eq/L)	IONIC FORM AS SHIPPED
ION EXCHANGE RESINS	AmberLite™ IRN99 H	Rad Waste Treatment	Premium 16% DVB uniform particle size cation resin with very high capacity and oxidative stability. Highest selectivity for cationic radioisotopes and highest total capacity for long runs resulting in reduced waste and exposure.	SAC	GEL	2.50	Н⁺
	AmberLite™ IRN78 OH	Rad Waste Treatment	Premium high solid uniform particle size anion resin with very high capacity used for removal of anionic radioisotopes.	SBA	GEL	1.20	OH
	AmberLite™ IRN9766 OH	Rad Waste Treatment	Macroporous anion resin designed to remove radioactive colloidal material in all nuclear applications. Often used as an overlay above a mixed bed or a cation resin.	SBA	MACRO	0.85	OH
	AmberLite™ IRN9652 H	Rad Waste Treatment	Macroporous high capacity cation resin with high affinity for heavy metals & ¹³⁷ Cs	SAC	MACRO	1.95	H⁺
	AmberLite™ IRN9675 H	Rad Waste Treatment	Nuclear grade macroporous cation resin designed to remove radioactive colloidal material in all nuclear applications. Often used as an overlay above a mixed bed.	SAC	MACRO	1.70	Η [‡]
	AmberLite™ IRN160 H/OH	Rad Waste & Decommissioning	High capacity nuclear grade mixed bed composed of uniform particle size AmberLite™ IRN97 H and IRN78 OH Resins on a 1:1 equivalent basis. Designed to minimize separation of anion and cation during installation and transfer.	MB	GEL/GEL	2.10/1.20	Н⁺∕ОН⁻
	AmberLite™ IRN170 H/OH	Rad Waste & Decommissioning	Premium nuclear grade mixed bed composed of uniform particle size AmberLite™ IRN99 H and IRN78 OH Resins on a 1:1 equivalent basis. Highest Selectivity for radioisotopes and highest total capacity for long resin life resulting in reduced waste and exposure.	MB	GEL/GEL	2.50/1.20	н⁺/он⁻
	AmberLite™ IRN9882 H/OH	Rad Waste & Decommissioning	Nuclear grade macroporous mixed bed composed of 40% cation resin (12%DVB) and 60% AmberLite™ IRN9766 Resin on a volume basis. Offers high echange kinetics and the ability to remove colloids for highest decontamination rates.	MB	MACRO/ MACRO	1.65/0.85	H ⁺ /OH ⁻
REVERSE OSMOSIS	FilmTec™ Elements	Rad Waste & Decommissioning	Please contact your DuPont representative for assistance.	N/A	N/A	N/A	N/A

Key:

SBA = Strong Base Anion SAC = Strong Acid Cation MB = Mixed Bed Chel. = Chelating resin

DuPontTM, the DuPont Oval Logo, and all trademarks and service marks denoted with TM, SM or ® are owned by affiliates of DuPont de Nemours Inc. unless otherwise noted. ©2020 DuPont.

No freedom from infringement of any patent or trademark owned by DuPont or others is to be inferred. Because use conditions and applicable laws may differ from one location to another and may change with time, Customer is responsible for determining whether products and the information in this document are appropriate for Customer's use and for ensuring that Customer's workplace and disposal practices are in compliance with applicable laws and other government enactments. The product shown in this literature may not be available for sale and/or available in all geographies where DuPont is represented. The claims made may not have been approved for use in all countries. DuPont assumes no obligation or leability for the information in this document. References to "DuPont" or the "Company" mean the DuPont legal entity selling the products to Customer unless otherwise expressly noted. NO WARRANTIES ARE GIVEN; ALL IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE ARE EXPRESSLY EXCLUDED.

www.dupont.com/water/contact-us